La Geometria

La Geometria
en la ciudad

La Geometria

La Geometria
en la arquitectura

La Geometria

La Geometria
en la tecnología

La Geometria

La Geometria
en el campo

8. Circunferencia tangente a una recta, una circunferencia y que pasa por un punto

lunes, 15 de marzo de 2010

Se consideran datos el punto P, la recta s y la circunferencia de centro O y radio r. La clave consiste en considerar una inversión de centro P y una potencia cualquiera, por ejemplo, la potencia de la circunferencia dada respecto del punto P. La circunferencia de centro P y radio PA ,siendo A el punto de tangencia de la circunferencia y la recta que pasa por P, es una circunferencia de puntos dobles en la inversión anterior. A continuación se dibuja la circunferencia inversa de la recta dada (circunferencia de centro C y radio CP) y después se trazan las cuatro tangentes comunes a esta circunferencia y a la circunferencia dada (T1T1’, T2T2’, T3T3’, T4T4’). Se hallan las inversas de estas tangentes, ya que, como la inversión conserva los ángulos, al ser tangentes a la circunferencia dada y a la circunferencia inversa de la recta dada, sus inversas, que son circunferencias, pasan por P y son tangentes a la recta y a la circunferencia dadas. Por otra parte, como la circunferencia de centro P y radio PA es de puntos dobles, los puntos de intersección de las rectas tangentes con esta circunferencia son puntos de las circunferencias solución y por tanto, los centros de las mismas se hallan trazando las mediatrices de los segmentos determinados sobres las rectas tangentes por la circunferencia de puntos dobles y por las mediatrices de los segmentos que determinan los puntos anteriores con P.


0 comentarios:

Publicar un comentario